Automated generation of an MVD by linking IDM and bSDD

June 4, 2021

Ghang Lee, Jeaeun Jeong, Jungdae Kim, and Seungwoo Sohn
Building Informatics Group, Yonsei University

Gutaek Kim, Eunhee Kang, Kyoungjun Kang, and Elena Gerasimenko
Cospec Innolab

Kyung Kim
BIM Peers
Outline

• Background and Problems
• Proposed solution
• Implementation
• Demonstration
Background and Problems
The information management process

ISO 19650-1:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) -- Information management using building information modelling -- Part 1: Concepts and principles
The information management process

ISO 19650-1:2018 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) -- Information management using building information modelling -- Part 1: Concepts and principles
ISO 19650-1 and IDM

ISO 19650-1

Information submission and management requirements

mandates

Information Delivery Manual (IDM)

ISO 29481-1

Information requirements
ISO 19650-1, IDM, and IFC/MVD

ISO 19650-1 mandates information submission and management requirements.

ISO 29481-1 formalizes information requirements.

ISO 16739-1 formalizes IFC and its views (MVDs).
ISO 19650-1, IDM, IFC/MVD, and bSDD

- **ISO 19650-1**: Information submission and management requirements
- **ISO 29481-1**: Information requirements
- **ISO 16739-1**: IFC and its views (MVDs)
- **ISO 12006-3**: buildingSMART Data Dictionary (bSDD)

ISO 19650-1 mandates the use of **ISO 29481-1** Information requirements.

ISO 29481-1 formalizes the **ISO 16739-1** IFC and its views (MVDs).

ISO 29481-1 provides terminology that is used in the **buildingSMART Data Dictionary (bSDD)**.
ISO 19650-1, IDM, IFC/MVD, and bSDD

ISO 19650-1
Information submission and management requirements

ISO 29481-1
Information requirements

ISO 16739-1
IFC and its views (MVDs)

ISO 12006-3
Data dictionary (schema)

buildingSMART Data Dictionary (bSDD)

<Cause>
IDM not machine-readable

<Impacts>
IDM not reusable and exchangeable
Broken connections between standards
Proposed Solution
ISO 29481-3 IDM Schema

<Goal>
To make an IDM a standard that is machine-readable, applicable, and transferrable (SMART)

<Status>
Initiated in April, 2019
Currently in the CD phase
Method 1: Mapping IDM and IFC

1. Information unit (IDM, ISO 29481-1, ISO 29481-3)

2. IFC element (IFC ISO 16739-1)

3. Concept-based MVD generation algorithm (Lee 2009)
Method 1: Mapping IDM and IFC

1. IDM (ISO 29481-1, ISO 29481-3)
 - Information unit

2. IFC (IFC ISO 16739-1)
 - IFC element

3. MVD (IFC ISO 16739-1)
 - Concept-based MVD generation algorithm (Lee 2009)

 SCHEMA myMVD;
 ENTITY IfcRoot
 END ENTITY
 ...
 ENTITY IfcSlab
 ...
 END ENTITY

Concepts:
- slab
- ifcSlab
(1) Specification of information units

ISO 29481-3 idmXSD

"slab"
(2) Linking an ER and a standard data model and its subschemas (MVDs)

A schema name of an open standard data schema (e.g., IFC4.0, cityGML...)

A subschema (MVD) name of the data dictionary (Design Coordination View, COBie...)

<ISO 29481-3 idmXSD>
"IfcSlab"

The name of the referenced schema or MVD (e.g., IFC4.0, cityGML, DCV, COBie...)

The name of the element in the reference schema (e.g., IfcDoor, IfcDoor.OverallHeight, IfcBuildingElement> IfcDoor...)

<ISO 29481-3 idmXSD>
Concept-Based Method for Extracting Valid Subsets from an EXPRESS Schema

Ghang Lee, Ph.D.¹

Abstract: An EXPRESS schema is a data schema defined in EXPRESS, an international standard language for defining product data schemas. This technical paper proposes and formally defines a set of conditions for generating a minimum valid subset of an EXPRESS schema corresponding to a concept, where a concept is a general idea and a subset is a partial model of a data schema. We introduce a notion of “minimal set” to define the relationships between a subset and other subsets, and also between a subset and concepts. A minimal set is the smallest complete subset of a schema that corresponds to a concept. Using IFC, an international standard data model for the architecture, engineering, and construction industry, the proposed conditions have been implemented in a software application developed for extracting subsets from the IFC schema matching the concepts. A number of examples are demonstrated.

CE Database subject headings: Computation; Computer software; Data processing; Standardization.

Condition 1. (Mapping between concepts and minimal sets). By the definition of “minimal set,” there must be one and only one minimal set \(M \) corresponding to each element \(c \) in a set \(C \) of concepts

\[\forall c \in C \rightarrow \exists x[f_{\text{m}}(c) = x \land \forall y[f_{\text{m}}(c) = y \rightarrow y = x]] \]

Condition 2. (Forming new concepts). Let \(c_i \) and \(c \) denote concepts or sets of properties:
1. \(\cap c_i = c \) iff \(c \) is a generalized concept such that each \(c_i \) is a \(\cap \land \) subtype of \(c \);
2. \(\cup c_i = c \) iff \(c \) is an aggregated concept such that each \(c_i \) is a \(\cup \land \) part of \(c \); and
3. If \(i = 0 \), then \(c_0 = c \) such that they are synonymous.

By the same token, a new minimal set can be defined as the intersection or union of other minimal sets.

Condition 3. (Forming new minimal sets). Let \(m_i \) denote a minimal set:
1. \(\cap m_i = m \) iff \(m \) is a minimal set corresponding to a new \(\cap \land \) generalized concept; and
2. \(\cup m_i = m \) iff \(m \) is a minimal set corresponding to a new \(\cup \land \) aggregated concept.

Proof for Condition 3

Let \(c_1 \), \(c_2 \), and \(c_3 \) be concepts and \(M_1 \), \(M_2 \) and \(M_3 \) be a minimal set:

1. If \(c_1 \rightarrow M_1 \land c_2 \rightarrow M_2 \), then \(c_1 \cap c_2 \rightarrow M_1 \cap M_2 \) by the definition of the intersection operation.
2. If \(c_1 \rightarrow M_1 \land c_2 \rightarrow M_2 \), then \(c_1 \cup c_2 \rightarrow M_1 \cup M_2 \) by the definition of the union operation.

(3) Derivation of a full valid MVD from individual elements

Concept-based MVD generation algorithm (Lee 2009)

ifcSlab

```plaintext
SCHEMA myMVD;
ENTITY IfcRoot
END ENTITY
...
ENTITY IfcSlab
...
END ENTITY
...
END SCHEMA
```
Method 2: Mapping IDM and IFC through bSDD

1. Information unit
 - IDM (ISO 29481-1, ISO 29481-3)

2. Concept
 - bSDD (ISO 12006-3)

3. IFC element
 - MVD (IFC ISO 16739-1)

4. Concept-based MVD generation algorithm (Lee 2009)
Method 2: Mapping IDM and IFC through bSDD

1. Information unit
 - concrete floor

2. Concept
 - concrete floor

3. IFC element
 - ifcSlab

4. Concept-based MVD generation algorithm (Lee 2009)

SCHEMA myMVD;
ENTITY IfcRoot
END ENTITY
...
ENTITY IfcSlab
...
END ENTITY
(1) Specification of information units

ISO 29481-3 idmXSD

"concrete floor"
(2) Linking ER and ISO 12006-3

A schema name of a data dictionary (e.g., bSDD) defined according to ISO 12006-3

A subschema (MVD) name of the data dictionary, if available

<ISO 29481-3 idmXSD>
Search for an IFC element that corresponds to “concrete floor” in bSDD —> “IfcSlab”

The name of the referenced schema (e.g., bSDD defined according to ISO 12006-3)

The name of the element in the reference schema

<ISO 29481-3 idmXSD>
(4) Derivation of a full valid MVD from individual elements

Concept-based MVD generation algorithm (Lee 2009)

```plaintext
SCHEMA myMVD;
ENTITY IfcRoot
END ENTITY
...
ENTITY IfcSlab
...
END ENTITY
...
END SCHEMA
```
Implementation
System Architecture

- Log In
- IDM Mgt.
- Search Module
- Search List Module
- Recent IDM Module
- Add/Delete IDM Module
- Document Status
- Project Phase
- Language
- Region
- Basic Code Mgt.
- MVD Generation
- idmXML Export
- Basic IO

.NET Framework 4.6.1
C#.NET
Demonstration
(1) Specify information units.
(2) Search an IFC element using a keyword
(3) Search an IFC element using a concept
(4) Generate an MVD
(5) Review the generated MVD.
Thank you.